NLRP12 provides a critical checkpoint for osteoclast differentiation.

نویسندگان

  • Jennifer L Krauss
  • Rong Zeng
  • Cynthia L Hickman-Brecks
  • Justin E Wilson
  • Jenny P-Y Ting
  • Deborah V Novack
چکیده

The alternative or noncanonical nuclear factor kappa B (NF-κB) pathway regulates the osteoclast (OC) response to receptor activator of nuclear factor kappa B ligand (RANKL) and thus bone metabolism. Although several lines of evidence support the emerging concept that nucleotide-binding leucine-rich repeat and pyrin domain-containing receptor 12 (NLRP12) impedes alternative NF-κB activation in innate immune cells, a functional role for NLRP12 outside an inflammatory disease model has yet to be reported. Our study demonstrates that NLRP12 has a protective role in bone via suppression of alternative NF-κB-induced osteoclastogenesis and is down-modulated in response to osteoclastogenic stimuli. Here, we show that retroviral overexpression of NLRP12 suppressed RelB nuclear translocation and OC formation. Conversely, genetic ablation of NLRP12 promoted NIK stabilization, RelB nuclear translocation, and increased osteoclastogenesis in vitro. Using radiation chimeras, we demonstrated these in vitro observations dovetail with our in vivo findings that NLRP12 deficiency leads to enhanced OC numbers accompanied by a significant decline in bone mass under physiological conditions. Consistent with the basal bone phenotype, we also observed an enhanced osteolytic response following RANKL injection over the calvaria of NLRP12-deficient chimeric mice compared with wild-type control mice. Thus, modulation of NLRP12 levels controls alternative NF-κB signaling in OC precursors, altering bone homeostasis and osteolytic responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NLRP12 Promotes Mouse Neutrophil Differentiation through Regulation of Non-canonical NF-κB and MAPKERK1/2 Signaling

Neutrophils are the most important component of the innate immune system. Mechanistic understanding of the mechanism underlying neutrophil differentiation remains elusive. Using genome-wide RNA-seq, we identified genes whose expression is dramatically up-regulated during neutrophil differentiation. Among them is nucleotide-binding leucine-rich repeat and pyrindomain-containing receptor 12 (NLRP...

متن کامل

Osteoclast differentiation.

The osteoclast is the primary bone resorbing cell. It is a highly specialized multinucleated cell whose primary function is to help in the control of calcium homeostasis. The osteoclast has been very difficult to study because of its relative inaccessability, low numbers, and fragility when isolated from bone. Recently, techniques have been developed to study the cell biology of the osteoclast ...

متن کامل

Involvement of FcRgamma in signal transduction of osteoclast-associated receptor (OSCAR).

Osteoclasts regulate homeostasis of bone development. A defect in osteoclast development results in osteopetrosis. Recently, the involvement of several molecules in osteoclast development has been found. Osteoclast-associated receptor (OSCAR) is one of such molecules critical for osteoclast differentiation. However, it remains unclear how OSCAR transduces signals for osteoclast differentiation....

متن کامل

Cytoplasmic hnRNPK interacts with GSK3β and is essential for the osteoclast differentiation.

Osteoclast differentiation is a complex and finely regulated physiological process that involves a variety of signaling pathways and factors. Recent studies suggested that the Ser9 phosphorylation of Glycogen synthase kinase-3β (GSK3β) is required for the osteoclast differentiation. However, the precise underlying mechanism remains unclear. We have previously identified the heterogeneous nuclea...

متن کامل

ERK5 Activation Is Essential for Osteoclast Differentiation

The MEK/ERK pathways are critical for controlling cell proliferation and differentiation. In this study, we show that the MEK5/ERK5 pathway participates in osteoclast differentiation. ERK5 was activated by M-CSF, which is one of the essential factors in osteoclast differentiation. Inhibition of MEK5 by BIX02189 or inhibition of ERK5 by XMD 8-92 blocked osteoclast differentiation. MEK5 knockdown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 33  شماره 

صفحات  -

تاریخ انتشار 2015